Statistics 210B Lecture 3 Notes

Daniel Raban

January 25, 2022

1 Sub-Gaussian and Sub-Exponential Random Variables

1.1 Sub-Gaussian random variables

Last time, we used Chernoff's inequality to get an upper bound on the tail probability of $\frac{1}{n}\sum_{i=1}^{n} Z_i - \mu$, where Z_i are iid and supported in [0,1]. We made a claim about the moment generating function of such random variables:

$$\mathbb{E}[e^{\lambda(Z-\mathbb{E}[Z])}] \le e^{\lambda^2/2}.$$

We can abstract this into a definition:

Definition 1.1. A random variable with $\mu = \mathbb{E}[X]$ is σ -sub-Gaussian¹ if there is a positive number $\sigma 0$ such that

$$\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\lambda^2 \sigma^2/2} \qquad \forall \lambda \in \mathbb{R}.$$

Combining with Chernoff's inequality, we have that if X is σ -sub-Gaussian, then

$$\mathbb{P}(X - \mu \ge t) \le \inf_{\lambda} \frac{\mathbb{E}[e^{\lambda(X - \mu)}]}{e^{\lambda t}} \le \inf e^{\lambda \sigma^2 / 2 - \lambda t}$$

This quadratic function in the exponent is minimized at $\lambda = t/\sigma^2$:

$$= e^{(t/\sigma^2)^2 \cdot \sigma^2/2 - t^2/\sigma^2} \\= e^{-t^2/(2\sigma^2)}$$

Why is this called "sub-Gaussian"?

¹Some textbooks call this σ^2 -sub-Gaussian, and you should think of σ as a surrogate for variance.

(a) If $G \sim N(\mu, \sigma^2)$, then

$$\mathbb{E}[e^{\lambda(G-\mu)}] = \int_{-\infty}^{\infty} e^{\lambda(x-\mu)} \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right) dx$$

We can combine the exponentials and complete the square in the exponent to solve this integral.

$$=e^{\lambda^2 \sigma^2/2}.$$

(b) If $G \sim N(0, 1)$, then

$$\lim_{t \to \infty} \frac{\mathbb{P}(G \ge t)}{\frac{1}{t} \underbrace{\frac{1}{\sqrt{2\pi}} \exp(-t^2/2)}_{\phi(t)}} = 1.$$

In addition, if ϕ is the standard Gaussian probability density function, then

$$\frac{1}{t}\phi(t) \leq \mathbb{P}(G \geq t) \leq \left(\frac{1}{t} - \frac{1}{t^3} + \frac{3}{t^5}\right)\phi(t).$$

This is exercise 2.2 in Wainwright's textbook. To prove this, first show that $\phi(z) = -\frac{\phi'(z)}{z}$. Next, calculate $\int_t^{\infty} \phi(z) dz = \int_t^{\infty} -\frac{\phi'(z)}{z} dz$ by using integration by parts.

1.2 Hoeffding's inequality

Proposition 1.1 (Hoeffding's inequality). Suppose X_i , i = 1, ..., n are independent, where X_i has mean μ and is σ_i -sub-Gaussian. Then

1.
$$\sum_{i=1}^{n} X_i$$
 has mean $\sum_{i=1}^{n} \mu_i$ and is sub-Gaussian with parameter $\sqrt{\sum_{i=1}^{n} \sigma_i^2}$.
2. $\mathbb{P}\left(\sum_{i=1}^{n} (X_i - \mu_i) \ge t\right) \le \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} \sigma_i^2}\right)$.

Proof.

1.

$$\mathbb{E}[e^{\lambda \sum_{i=1}^{n} (X_i - \mu_i)}] = \mathbb{E}\left[\prod_{i=1}^{n} e^{\lambda (X_i - \mu_i)}\right]$$
$$= \prod_{i=1}^{n} \mathbb{E}[e^{\lambda (X_i - \mu_i)}]$$

$$\leq \prod_{i=1}^{n} e^{\lambda \sigma_i^2/2} \\ = e^{\lambda^2 (\sum_{i=1}^{n} \sigma_i^2)/2}.$$

2. The second statement is by Chernoff's inequality, as above.

Let $(X_i)_{i \in [n]} \overset{oniid}{\sim} X$ be σ -sub-Gaussian. Then

$$\mathbb{P}\left(\frac{1}{n}\sum_{i=1}^{n}X_{i}-\mu \geq t\right) = \mathbb{P}\left(\sum_{i=1}^{n}(X_{i}-\mu) \geq nt\right)$$
$$\leq \exp\left(-\frac{(nt)^{2}}{2n\sigma^{2}}\right)$$
$$= \exp\left(-\frac{nt^{2}}{2\sigma^{2}}\right).$$

(a) How do we extract the order of $\frac{1}{n} \sum_{i=1}^{n} X_{I} - \mu$? Let $\delta = \exp(-\frac{nt^{2}}{2\sigma^{2}})$ and solve for t to get $t = \sigma \sqrt{\frac{2\log(1/\delta)}{n}}$. Thus,

$$\frac{1}{n}\sum_{i=1}^{n}X_{i} \leq \mu + \sigma \sqrt{\frac{2\log(1/\delta)}{n}} \qquad \text{with probability at least } 1 - \delta.$$

To check for mistakes, look at the units: X_i , μ , and σ have the same units, while δ and n are unitless. Here, we can see that the units match up.

(b) How many samples are needed to that $\frac{1}{n}\sum_{i=1}^{n}X_i - \mu \leq t$ with probability $1 - \delta$? Let $\delta = \exp(-\frac{nt^2}{2\sigma^2})$, and solve for n to get $n = \frac{2\sigma^2}{t^2}\log(1/\delta)$.

1.3 Examples of sub-Gaussian random variables

Example 1.1 (Rademacher random variables). Consider a **Rademacher random variable** $\varepsilon \sim \text{Unif}(\{\pm 1\})$. ε is 1-sub-Gaussian.

Proof.

$$\mathbb{E}[e^{\lambda\varepsilon}] = \frac{1}{2}e^{\lambda} + \frac{1}{2}e^{-\lambda}$$

We want to upper bound this by $e^{\lambda^2/2}$. One way is to use the Taylor expansion:

$$=\frac{1}{2}\sum_{k=1}^{\infty}\frac{\lambda^k}{k!}+\frac{(-\lambda)^k}{k!}$$

$$=\sum_{k=0}^{\infty}\frac{\lambda^{2k}}{(2k!)}$$

If we take the Taylor expansion of $e^{\lambda^2/2}$, we get $1 + \sum_{k=1}^{\infty} \lambda^{2k} 2^k k!$. To compare the Taylor expansions, we only need to show that $(2k)! \geq 2^k k!$. \Box

Example 1.2 (Bounded random variable). Let $X \in \mathcal{P}([a, b])$. We claim that X is (b - a)-sub-Gaussian.²

Proof. Instead of a direct calculation, we use a series of tricks.

Trick 1: Let $X' \stackrel{d}{=} X$ with X, X' independent. Then

$$\mathbb{E}_X[e^{\lambda(X-\mu)}] = \mathbb{E}_X[e^{\lambda X - \mathbb{E}_X[X']}]$$

Trick 2: Use Jensen's inequality to get $e^{-\lambda \mathbb{E}[X']} \leq \mathbb{E}[e^{-\lambda X'}]$. This gives $\leq \mathbb{E}_{X,X'} \mathbb{E}[e^{\lambda(X-X')}]$

Trick 3: Introduce $\varepsilon \sim \text{Unif}(\{\pm 1\})$ with ε independent of (X, X'). Then $\varepsilon(X - X') \stackrel{d}{=} X - X'$.

$$= \mathbb{E}_{\varepsilon, X, X'} \mathbb{E}[e^{\lambda \varepsilon (X - X')}]$$

Using the tower property of conditional expectation,

$$= \mathbb{E}_{X,X'}[\mathbb{E}_{\varepsilon}[e^{\lambda \varepsilon (X-X')} \mid X, X']]$$

By the 1-sub-Gaussianity of ε ,

 $\leq \mathbb{E}_{X,X'}[e^{\lambda^2(X-X')^2/2}]$ Since $(X-X') \leq (b-a)^2$ by the boundedness of X, X', $< e^{\lambda^2(b-a)^2/2}.$

Remark 1.1. These tricks will be useful in later lectures and in statistics research. This technique is known as **symmetrization**.

1.4 Equivalent characterizations of sub-Gaussianity

Here are some

Theorem 1.1 (HDP 2.6 or RV 2.5.1). Let X be a random variable. Then the following are equivalent:

(i) The tails of X satisfy

$$\mathbb{P}(|X| \ge t) \le 2 \exp\left(-\frac{t^2}{\kappa_1^2}\right) \qquad \forall t \ge 0.$$

²It is actually possible to show this with parameter (b - a)/2, but we will not show this fact in this lecture.

(ii) The moments of X satisfy

$$||X||_{L^p} = (\mathbb{E}[|X^p|])^{1/p} \le \kappa_2 \sqrt{p}, \qquad \forall p \ge 1.$$

(iii) The moment generating function of X^2 satisfies

$$\mathbb{E}[\exp(\lambda^2 X^2)] \le \exp(\kappa_3^2 \lambda^2) \qquad \forall \lambda \text{ such that } |\lambda \le \frac{1}{\kappa_3}.$$

(iv) The moment generating function of X^2 is bounded at some point:

 $\mathbb{E}[\exp(X^2/\kappa_4^2)] \le 2.$

Moreover, if $\mathbb{E}[X] = 0$, then properties (i)-(iv) are also equivalent to

5. The moment generating function of X satisfies

$$\mathbb{E}[\exp(\lambda X)] \le \exp(\kappa_5^2 \lambda^2 / 2) \qquad \forall \lambda \in \mathbb{R}.$$

Here, $\kappa_1, \ldots, \kappa_5$ are universal constants.

Proof. Proof is an exercise.

Remark 1.2. Some people define sub-Gaussian through property (i) instead of (v). It can also be defined in terms of **Orlicz norms**, which are covered in an exercise in Wainwright's book. We use the moment generating function definition because a *tensorization* property will be important to us later.

Proposition 1.2. There is a universal constant κ such that if X is σ -sub-Gaussian and Z is a random variable bounded by 1, then ZX is $\kappa\sigma$ -sub-Gaussian.

Remark 1.3. Z and X can be dependent!

Proof. We can use any of the characterizations (i), (ii), (ii), (iv) to prove this. (v) doesn't work as easily. \Box

1.5 Sub-exponential random variables

Let $G \sim N(0, 1)$. Then G^2 is not sub-Gaussian. This is because $\mathbb{E}[G^2] = 1$, and

$$\mathbb{E}[e^{\lambda(G^2-1)}] = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda(z^2-1)} e^{-z^2/2} dz$$
$$= \begin{cases} \frac{e^{-\lambda}}{\sqrt{1-2\lambda}} & \lambda < 1/2\\ \infty & \lambda \ge 1/2. \end{cases}$$

We can still derive a good but weaker tail bound for this kind of random variable.

Definition 1.2. A random variable X is (ν, α) -sub-exponential if

$$\mathbb{E}[e^{\lambda(X-\mu)}] \le e^{\lambda^2 \nu^2/2} \qquad \forall |\lambda| \le \frac{1}{\alpha}.$$

We can see from this definition that sub-Gaussian variables are sub-exponential with any $\alpha > 0$.

Example 1.3. If $G \sim N(0,1)$, then G^2 is (2,4)-sub-exponential.

Proof. We want to show that

$$\mathbb{E}[e^{\lambda(G^2-1)}] = \frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \le e^{2\lambda^2} \qquad \forall |\lambda| \le \frac{1}{4}.$$

we can do this by comparing Taylor series.

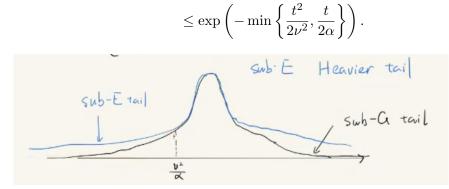
Combining this definition with Chernoff's inequality, we have that if X is (ν, α) -sub-exponential, then

$$\mathbb{P}(X - \mu \ge t) \le \inf_{\lambda} \frac{\mathbb{E}[e^{\lambda(X-\mu)}]}{e^{\lambda t}}$$
$$\le \inf_{|\lambda| \le 1/\alpha} \frac{e^{\nu^2 \lambda^2/2}}{e^{\lambda t}}$$
$$= \exp\left(\inf_{\lambda \le 1/\alpha} \nu^2 \lambda^2/2 - \lambda t\right)$$

If this interval contains $\lambda = t/\nu^2$, then this is the minimum. Otherwise, the minimum will be on the boundary.

$$= \begin{cases} \exp(-\frac{t^2}{2\nu^2}) & \text{if } \frac{t}{\nu^2} \le \frac{1}{\alpha} \\ \exp(\frac{\nu^2}{2\alpha^2} - \frac{t}{\alpha}) & \text{if } \frac{t}{\nu^2} > \frac{1}{\alpha} \end{cases}$$

The second expression is $\leq \exp(-\frac{t}{\nu^2}\frac{\nu^2}{2\alpha}-\frac{t}{\alpha}) = \exp(-\frac{t}{2\alpha})$. So we can write this as



Why is this called "sub-exponential?

(a) If $Z \sim \text{Exp}(1/\alpha)$, then

$$\mathbb{P}(Z \ge t) = \exp\left(-\frac{t}{\alpha}\right).$$

(b) Exp(1) is $(\sqrt{2}, 2)$ -sub-exponential: If $Z \sim \text{Exp}(1)$, then

$$Z \stackrel{d}{=} \frac{1}{2}(G_1^2 + G_2^2), \qquad G_1, G_2 \stackrel{\text{iid}}{\sim} N(0, 1).$$

Then

$$\mathbb{E}[e^{\lambda(Z-1)}] = \mathbb{E}[e^{\frac{\lambda}{2}(G_1^2 + G_2^2 - 2)}]$$

= $\mathbb{E}[e^{\frac{\lambda}{2}(G_1^2 - 1)}] \mathbb{E}[e^{\frac{\lambda}{2}(G_2^2 - 1)}]$

for $|\lambda| \leq 1/2$,

$$\leq \frac{e^{-\lambda}}{1-\lambda} \\ \leq e^{\lambda^2}.$$