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1 Sub-Gaussian and Sub-Exponential Random Variables

1.1 Sub-Gaussian random variables

Last time, we used Chernoff’s inequality to get an upper bound on the tail probability
of 1

n

∑n
i=1 Zi − µ, where Zi are iid and supported in [0, 1]. We made a claim about the

moment generating function of such random variables:

E[eλ(Z−E[Z])] ≤ eλ2/2.

We can abstract this into a definition:

Definition 1.1. A random variable with µ = E[X] is σ-sub-Gaussian1 if there is a
positive number σ0 such that

E[eλ(X−µ)] ≤ eλ2σ2/2 ∀λ ∈ R.

Combining with Chernoff’s inequality, we have that if X is σ-sub-Gaussian, then

P(X − µ ≥ t) ≤ inf
λ

E[eλ(X−µ)]

eλt

≤ inf eλσ
2/2−λt

This quadratic function in the exponent is minimized at λ = t/σ2:

= e(t/σ
2)2·σ2/2−t2/σ2

= e−t
2/(2σ2).

Why is this called “sub-Gaussian”?

1Some textbooks call this σ2-sub-Gaussian, and you should think of σ as a surrogate for variance.
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(a) If G ∼ N(µ, σ2), then

E[eλ(G−µ)] =

∫ ∞
−∞

eλ(x−µ)
1√
2πσ

exp

(
−(x− µ)2

2σ2

)
dx

We can combine the exponentials and complete the square in the exponent to solve
this integral.

= eλ
2σ2/2.

(b) If G ∼ N(0, 1), then

lim
t→∞

P(G ≥ t)
1
t

1√
2π

exp(−t2/2)︸ ︷︷ ︸
φ(t)

= 1.

In addition, if φ is the standard Gaussian probability density function, then

1

t
φ(t) ≤ P(G ≥ t) ≤

(
1

t
− 1

t3
+

3

t5

)
φ(t).

This is exercise 2.2 in Wainwright’s textbook. To prove this, first show that φ(z) =

−φ′(z)
z . Next, calculate

∫∞
t φ(z) dz =

∫∞
t −

φ′(z)
z dz by using integration by parts.

1.2 Hoeffding’s inequality

Proposition 1.1 (Hoeffding’s inequality). Suppose Xi, i = 1, . . . , n are independent, where
Xi has mean µ and is σi-sub-Gaussian. Then

1.
∑n

i=1Xi has mean
∑n

i=1 µi and is sub-Gaussian with parameter
√∑n

i=1 σ
2
i .

2.

P

(
n∑
i=1

(Xi − µi) ≥ t

)
≤ exp

(
− t2

2
∑n

i=1 σ
2
i

)
.

Proof.

1.

E[eλ
∑n
i=1(Xi−µi)] = E

[
n∏
i=1

eλ(Xi−µi)

]

=

n∏
i=1

E[eλ(Xi−µi)]
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≤
n∏
i=1

eλσ
2
i /2

= eλ
2(
∑n
i=1 σ

2
i )/2.

2. The second statement is by Chernoff’s inequality, as above.

Let (Xi)i∈[n]
oniid∼ X be σ-sub-Gaussian. Then

P

(
1

n

n∑
i=1

Xi − µ ≥ t

)
= P

(
n∑
i=1

(Xi − µ) ≥ nt

)

≤ exp

(
−(nt)2

2nσ2

)
= exp

(
− nt

2

2σ2

)
.

(a) How do we extract the order of 1
n

∑n
i=1XI − µ? Let δ = exp(− nt2

2σ2 and solve for t to

get t = σ

√
2 log(1/δ)

n . Thus,

1

n

n∑
i=1

Xi ≤ µ+ σ

√
2 log(1/δ)

n
with probability at least 1− δ.

To check for mistakes, look at the units: Xi, µ, and σ have the same units, while δ
and n are unitless. Here, we can see that the units match up.

(b) How many samples are needed to that 1
n

∑n
i=1Xi−µ ≤ t with probability 1− δ? Let

δ = exp(− nt2

2σ2 ), and solve for n to get n = 2σ2

t2
log(1/δ).

1.3 Examples of sub-Gaussian random variables

Example 1.1 (Rademacher random variables). Consider a Rademacher random vari-
able ε ∼ Unif({±1}). ε is 1-sub-Gaussian.

Proof.

E[eλε] =
1

2
eλ +

1

2
e−λ

We want to upper bound this by eλ
2/2. One way is to use the Taylor expansion:

=
1

2

∞∑
k=1

λk

k!
+

(−λ)k

k!
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=

∞∑
k=0

λ2k

(2k!)
.

If we take the Taylor expansion of eλ
2/2, we get 1 +

∑∞
k=1 λ

2k2kk!. To compare the Taylor
expansions, we only need to show that (2k)! ≥ 2kk!.

Example 1.2 (Bounded random variable). Let X ∈ P([a, b]). We claim that X is (b− a)-
sub-Gaussian.2

Proof. Instead of a direct calculation, we use a series of tricks.

Trick 1: Let X ′
d
= X with X,X ′ independent. Then

EX [eλ(X−µ)] = EX [eλX−EX [X′]]

Trick 2: Use Jensen’s inequality to get e−λE[X
′] ≤ E[e−λX

′
]. This gives

≤ EX,X′ E[eλ(X−X
′)]

Trick 3: Introduce ε ∼ Unif({±1}) with ε independent of (X,X ′). Then ε(X − X ′) d
=

X −X ′.
= Eε,X,X′ E[eλε(X−X

′)]

Using the tower property of conditional expectation,

= EX,X′ [Eε[eλε(X−X
′) | X,X ′]]

By the 1-sub-Gaussianity of ε,

≤ EX,X′ [eλ
2(X−X′)2/2]

Since (X −X ′) ≤ (b− a)2 by the boundedness of X,X ′,

≤ eλ2(b−a)2/2.

Remark 1.1. These tricks will be useful in later lectures and in statistics research. This
technique is known as symmetrization.

1.4 Equivalent characterizations of sub-Gaussianity

Here are some

Theorem 1.1 (HDP 2.6 or RV 2.5.1). Let X be a random variable. Then the following
are equivalent:

(i) The tails of X satisfy

P(|X| ≥ t) ≤ 2 exp

(
− t

2

κ21

)
∀t ≥ 0.

2It is actually possible to show this with parameter (b − a)/2, but we will not show this fact in this
lecture.
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(ii) The moments of X satisfy

‖X‖Lp = (E[|Xp|])1/p ≤ κ2
√
p, ∀p ≥ 1.

(iii) The moment generating function of X2 satisfies

E[exp(λ2X2)] ≤ exp(κ23λ
2) ∀λ such that |λ ≤ 1

κ3
.

(iv) The moment generating function of X2 is bounded at some point:

E[exp(X2/κ24)] ≤ 2.

Moreover, if E[X] = 0, then properties (i)-(iv) are also equivalent to

5. The moment generating function of X satisfies

E[exp(λX)] ≤ exp(κ25λ
2/2) ∀λ ∈ R.

Here, κ1, . . . , κ5 are universal constants.

Proof. Proof is an exercise.

Remark 1.2. Some people define sub-Gaussian through property (i) instead of (v). It can
also be defined in terms of Orlicz norms, which are covered in an exercise in Wainwright’s
book. We use the moment generating function definition because a tensorization property
will be important to us later.

Proposition 1.2. There is a universal constant κ such that if X is σ-sub-Gaussian and
Z is a random variable bounded by 1, then ZX is κσ-sub-Gaussian.

Remark 1.3. Z and X can be dependent!

Proof. We can use any of the characterizations (i), (ii), (ii), (iv) to prove this. (v) doesn’t
work as easily.

1.5 Sub-exponential random variables

Let G ∼ N(0, 1). Then G2 is not sub-Gaussian. This is because E[G2] = 1, and

E[eλ(G
2−1)] =

1√
2π

∫ ∞
−∞

eλ(z
2−1)e−z

2/2 dz

=

{
e−λ√
1−2λ λ < 1/2

∞ λ ≥ 1/2.

We can still derive a good but weaker tail bound for this kind of random variable.
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Definition 1.2. A random variable X is (ν, α)-sub-exponential if

E[eλ(X−µ)] ≤ eλ2ν2/2 ∀|λ| ≤ 1

α
.

We can see from this definition that sub-Gaussian variables are sub-exponential with
any α > 0.

Example 1.3. If G ∼ N(0, 1), then G2 is (2, 4)-sub-exponential.

Proof. We want to show that

E[eλ(G
2−1)] =

e−λ√
1− 2λ

≤ e2λ2 ∀|λ| ≤ 1

4
.

we can do this by comparing Taylor series.

Combining this definition with Chernoff’s inequalitiy, we have that if X is (ν, α)-sub-
exponential, then

P(X − µ ≥ t) ≤ inf
λ

E[eλ(X−µ)

eλt

≤ inf
|λ|≤1/α

eν
2λ2/2

eλt

= exp

(
inf

λ≤1/α
ν2λ2/2− λt

)
If this interval contains λ = t/ν2, then this is the minimum. Otherwise, the minimum will
be on the boundary.

=

{
exp(− t2

2ν2
) if t

ν2
≤ 1

α

exp( ν2

2α2 − t
α) if t

ν2
> 1

α

The second expression is ≤ exp(− t
ν2

ν2

2α −
t
α) = exp(− t

2α). So we can write this as

≤ exp

(
−min

{
t2

2ν2
,
t

2α

})
.

Why is this called “sub-exponential?
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(a) If Z ∼ Exp(1/α), then

P(Z ≥ t) = exp

(
− t
α

)
.

(b) Exp(1) is (
√

2, 2)-sub-exponential: If Z ∼ Exp(1), then

Z
d
=

1

2
(G2

1 +G2
2), G1, G2

iid∼ N(0, 1).

Then

E[eλ(Z−1)] = E[e
λ
2
(G2

1+G
2
2−2)]

= E[e
λ
2
(G2

1−1)]E[e
λ
2
(G2

2−1)]

for |λ| ≤ 1/2,

≤ e−λ

1− λ
≤ eλ2 .
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